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Abstract
Multimodal sentiment analysis (MSA) is attracting increasing at-
tention from researchers. Existing studies on MSA typically rely
on surface-level feature extraction and fusion that can be directly
obtained from multimodal data, which may often ignore the un-
derlying semantic connection between images and texts. Recent
progress in large multimodal models (LMMs) has demonstrated
their impressive reasoning abilities, which can be leveraged to
improve traditional MSA approaches by providing a deeper under-
standing of the sematic connection of the modalities. Toward this
issue, in this paper, we propose a novel framework called MPT
that combines traditional MSA approaches with Multi-Perspective
Thinking from LMMs to improve prediction outcomes. Specifically,
MPT instructs the traditional multimodal deep learning models
to understand multiple-perspective rationales for different senti-
ment polarities, augmenting its knowledge base and enhancing
its ability to make more accurate predictions. Extensive experi-
ments on four refined datasets show that MPT can not only de-
liver better performance compared with existing methods, but also
demonstrate good cross-modal understanding ability for recogniz-
ing user sentiment. The codes and datasets can be accessed here:
https://github.com/RMJHQwQ/MPT.

CCS Concepts
• Information systems→Multimedia information systems;
Social networks.
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1 Introduction
Social networks like Twitter1 and Xiaohongshu2 have become an
indispensable part of our daily lives, and we have become accus-
tomed to expressing our views or emotions toward specific things
on social networks. Currently, most of the generated content on
social networks consists of multimodal data involving images and
texts [26]. Given a post that contains an image and the correspond-
ing text, multimodal sentiment analysis (MSA) aims to infer the
user’s sentiment polarity [5]. In Fig.1, we display representative
tweet examples that convey users’ positive, neutral or negative
sentiment.

Existing studies basically rely on designing complicated deep
neural network architectures to extract features from different data
modalities, and further attempt to predict the user sentiment hidden
in the multimodal data through cross-modality feature interaction
[8, 10, 21]. However, the operating mechanism of these traditional
approaches is basically like a black box which is unable to pro-
vide reasons or reasoning processes for making predictions and
therefore lacks interpretability to a large extent. Moreover, tradi-
tional approaches are generally limited to extracting surface-level
features from different modalities and trying to align them, with
little consideration given to the deep semantic connection between
the image and the text. We take the post shown in Fig. 1 (c) as an
example, where the user complains in the text that her Christmas
gift is only a red hat, even though she looks smiling in the image.

1www.twitter.com
2www.xiaohongshu.com

2042

急支糖浆
下划线

https://orcid.org/
https://github.com/RMJHQwQ/MPT
https://doi.org/10.1145/3746252.3761328
https://doi.org/10.1145/3746252.3761328
https://doi.org/10.1145/3746252.3761328
www.twitter.com
www.xiaohongshu.com


CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Juhao Ma et al.

Rdy to watch @ThomasMulcair rock it 
tnight in the @globeandmail debate at 
@WinnipegNews Café #NDP #cdnpoli 
#elxn42

Image:

Text:

Sentiment: Positive

(a)

The Delusions of David Frum's 
Mind — Canada's Prodigal Republican 
Son: #cdnpoli #elxn42 #CPC 
http://t.co/o0nn0L4Isy

Image:

Text:

Sentiment:

(b)

Neutral

My Christmas gift is just this little red 
hat .... �

Image:

Text:

Sentiment: Negative

(c)

#HamOnt is a tough town. Don't pay 
taxes? We cut off your water ;)

Image:

Text:

Sentiment: Negative

(d)

Figure 1: Examples of multimodal tweets conveying positive,
neutral or negative sentiment polarities.

Obviously, the sentiment label of this post is negative considering
both the text and the image. However, if judged solely from the
image, the post should convey positive emotion because the user
looks smiling. This means that if only surface-level features of dif-
ferent modalities are considered, traditional approaches will face
some contradictions (at least in this example and similar cases),
making it difficult to accurately identify user sentiment. In such a
circumstance, it is essential to incorporate more deeper semantic
connection between the image and the text for MSA tasks.

Recently, large multimodal models (LMMs) like GPT-4o and
Qwen-2.5-VL have demonstrated impressive reasoning (or think-
ing) capabilities in cross-modality information retrieval tasks, par-
ticularly adept at capturing deep semantic connections between
different data modalities [20]. Therefore, if traditional approaches
can be combined with LMMs, the performance of MSA is expected
to be improved. To achieve this goal and address the above issue,
in this paper, we conceive a novel framework called MPT, which in-
tegrates the feature extraction and fusion capabilities of traditional
deep learningmodels with themulti-perspective thinking capability
of LMMs. Fig. 2 illustrates an overview of MPT. The characteristics
of this framework are two-fold. First, we make modifications to ex-
isting multimodal datasets such as MVSA-Single / MVSA-Multiple
[22], Memotion [23] and CH-Mits [21]. Specifically, we introduce
indicative prompts corresponding to different sentiment polarities
and collect responses from LMMs, the primary objective of which
is to allow LMMs to analyze textual and visual information from
multiple sentiment perspectives. By prompting LMMs to interpret
the same text-image pair through different sentimental lenses, our
approach is able to understand multiple rationales for different
sentiment polarities. Second, to learn the fused feature represen-
tation of a specific sentiment label and differentiate the feature
representations of different sentiment labels, we deploy label-based
contrastive learning after a lightweight attention-based feature
fusion.

In brief, contributions of this paper are summarized as follows.

• LMMs are leveraged to strengthen existing deep learning
models for multimodal sentiment analysis, where multi-
perspective thinking plays the role of instructing traditional
approaches to understand multiple rationales for different
sentiment polarities, augmenting their knowledge base and
enhancing their ability to make more accurate predictions.
• A meticulously designed network architecture is used to
gradually fuse text and image input as well as multiple-
perspective rationales for different sentiment polarities from
LMMs. The fused feature is not only used for classification,
but also taken as input by a multi-label contrastive learning
mechanism, which is employed to better learn representa-
tions of different sentiment labels.
• Various multimodal datasets are refined, where each image-
text pair is enriched by multi-perspective thinking results
from LMMs with regard to different sentiment labels. Based
on the curated datasets, extensive experiments are carried
out, and the results verify that the MPT framework can
not only perform better than state-of-the-art approaches
with regard to quantitative metrics, but also demonstrate
good cross-modal understanding ability for recognizing user
sentiment. The refined datasets and codes are all released.

2 Related Works
2.1 Multimodal Sentiment Analysis
The earliest visual-textual sentiment analysis models are feature-
based [34]. In SentiBank [2], 1200 adjective-noun pairs were ex-
tracted as visual features and SentiStrength was used to calculate
text features in the multimodal tweet sentiment analysis task. Con-
volution Neural Networks (CNNs) were also employed to extract
features from texts and images in [39]. In recent years, MSA has also
attractedmuch attention. In [36], the authors proposed the TumEmo
dataset and the MVAN model for MSA. In [16], contrastive learning
and data augmentation were utilized to align and fuse token-level
text and image. Yang et al. [33] disentangled representation learning
to reduce the distribution gap and the redundancy of information
that exists between heterogeneous modalities. PEMNet [21] applies
a parallel feature extraction method to obtain a richer semantic
representation. The attention mechanism also achieves great per-
formance on MSA tasks. CMMT [35] addressed the limitations
of existing methods by incorporating aspect / sentiment-aware
intramodal representations and a Text-Guided Cross-Modal Inter-
action Module to dynamically control the contributions of visual
information. AoM [43] introduced an aspect-aware attention mod-
ule to selectively align relevant textual tokens and image regions.
In terms of feature fusion, [9, 25] tried effective ways to take into
account interactions between different modalities.

Although existing approaches relying on complicated deep neu-
ral networks have shown effectiveness in MSA tasks, they still
focus on surface-level feature extraction from different data modal-
ities, with less attention paid to the information interaction hidden
between different modalities.
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The tweet is positive 

because …
Prompt

Given a tweet that consists 

of an image and a text, 

please give me a rationale 

of why the tweet is 

{positive, neutral, negative}

The tweet is neutral 

because …

The tweet is negative 

because …

Textual Encoder

@Dthompsonsmile: So proud 
of these kids! Not only talented, 
energetic and hardworking, but 

respectful and kind-hearted!

Multi-Perspective Thinking via LMMs Text Input Image Input

Visual Encoder

Weighted Summation LSTM SKNet CNN ViT

Lightweight Attention Feature Fusion

Multi-layer Perceptron

pos

pos

neg

neu

pos

neg

neg

neu

Sentiment Classification Multi-label Contrastive Learning
pos neg pos neu posneg neg neu

Figure 2: An overview of the proposed MPT framework.

2.2 LMMs for Multimodal Data Processing
Li et al. [13] proposed BLIP-2 which bridges the modality gap using
a lightweight Querying Transformer, which is pre-trained in two
stages. Liu et al. [19] introduced LLaVawhich combined the CLIP [7]
visual encoder and the Vicuna language model through a two-stage
instruction tuning. Bai et al. [1] introduced Qwen-VL which excels
in understanding both texts and images. Chen et al. [3] proposed
Janus-Pro that achieves significant advances in both multimodal
understanding and text-to-image instruction-following capabilities.

LMMs have been applied in various tasks [17, 18, 24]. Their effec-
tiveness and power are also widely recognized inMSA tasks [4]. Tra-
ditional MSA models only analyzed the superficial information of
features, which limits their ability to exploit deeper semantic-level
information. WisdoM [28] utilized LMMs to generate contextual
world knowledge to aid predict sentiments. Inspired by the success
of prompt-based fine-tuning approaches in a few-shot scenario,
several multimodal prompt-based fine-tuning methods such as UP-
MPF [41] and PVLM [40] were proposed. Wu et al. [29] introduces
a novel fine-tuning framework for large language models in few-
shot multimodal aspect-based sentiment classification. [15] firstly
applies Chain-of-Thought reasoning in multimodal sentiment anal-
ysis using the novel MM-PEAR-CoT framework, enhancing text
representation with high-level reasoning and cross-modal filtering.

However, despite their powerful reasoning capabilities, LMMs
still produce incorrect judgments or entirely unsatisfactory out-
puts due to limitations inherent in their training paradigm and
decoder-only architecture. Consequently, relying solely on LLMs
for sentiment analysis is insufficient.

In this work, we employ amulti-perspective thinking mecha-
nism via LMMs to enhance traditional multimodal sentiment anal-
ysis. Specifically, we prompt the LMM to analyze textual-visual
inputs from different sentiment perspectives (positive, neutral, and
negative) to infer the user’s emotional stance. The insights gen-
erated from LMM reasoning process are then incorporated into
a meticulously designed network to enrich the feature space of
traditional deep learning models. As far as we know, we are the
first to adopt such multi-perspective thinking strategy via LMMs
for the MSA task.

3 Problem Formulation
As is shown in Fig. 1, we denote a multimodal image-text pair
as 𝑚𝑖 = {𝑣𝑖 , 𝑡𝑖 }, where 𝑣𝑖 is the visual content and 𝑡𝑖 is the tex-
tual content posted by a user. Each image-text pair 𝑚𝑖 has a la-
bel 𝑝𝑖 that belongs to an element of the sentiment polarity set
{𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑛𝑒𝑢𝑡𝑟𝑎𝑙, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒}.
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Given a set of multimodal image-text pairsM = {𝑚1,𝑚2, ...,𝑚𝑛}
and the corresponding labels P = {𝑝1, 𝑝2, ..., 𝑝𝑛} where 𝑛 indicates
the number of samples, our objective is to learn a ternary classi-
fier 𝑓 (·), so that for any given image-text pair𝑚 𝑗 = {𝑣 𝑗 , 𝑡 𝑗 }, we
can recognize its sentiment polarity by predicting its label, i.e.,
𝑓 (𝑚 𝑗 ) → {𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑛𝑒𝑢𝑡𝑟𝑎𝑙, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒}.

4 Our Approach
4.1 Multi-perspective Thinking via LMMs
Large multimodal models (LMMs) exhibit a certain degree of rea-
soning ability, enabling them to analyze various inputs logically
and generate reasonable interpretations. To achieve more effective
sentiment classification, it is necessary to integrate LMMs with
traditional multimodal deep learning sentiment analysis networks.
The detailed methodology is as follows:

Given an input of an image and the corresponding text 𝑚𝑖 =

{𝑣𝑖 , 𝑡𝑖 } ∈ M, we prompt the LMMs to generate three competing
rationales from three polarities 𝑝𝑖 ∈ {𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑛𝑒𝑢𝑡𝑟𝑎𝑙, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒},
the flow can be depicted as Fig. 3.

    “Given a tweet that consists of a text and an image, please 

give me a rationale of why this tweet is Positive/Neutral/

Negative

    Tweet text: Text

    Tweet image: Image
Follow the rules below:

    * Just give your rationale.

    * You must think it is Positive/Neutral/Negative.

    * Answer me in English.”

Help the helpless. Tweet & retweet 

for Syria. Don’t let evil get its way.

Image:

Text: Help the helpless. Tweet & retweet 

for Syria. Don’t let evil get its way.

Image:

Text: Help the helpless. Tweet & retweet 

for Syria. Don’t let evil get its way.

Image:

Text:

Prompt

The tweet is 

Positive 

because …

The tweet is 

Neutral 

because …

The tweet is 

Negative 

because ...

The tweet is 

Positive 

because …

The tweet is 

Neutral 

because …

The tweet is 

Negative 

because ...

Generate 

Rationales

 Text & Image

Input

Figure 3: The utilization of the LMMs.

Using this strategy, we can obtain rationales from three differ-
ent perspectives, namely 𝑟𝑝𝑜𝑠 , 𝑟𝑛𝑒𝑢 and 𝑟𝑛𝑒𝑔 . Equipped with these
rationales, we leverage LMMs to analyze the input from diverse
perspectives, generating a broader range of background knowledge.
Since the generated knowledge includes both useful information
for sentiment analysis and irrelevant or unsupported content, it
allows other components of the model to access richer contextual
information. As a result, this facilitates a more comprehensive as-
sessment of the sentiment expressed in the input from multiple
perspectives.

4.2 Sentiment Classification
Feature extraction plays a crucial role in multimodal sentiment anal-
ysis, as it directly impacts the model’s ability to learn from input
features. For text input, we refer to PEMNet [21], which uses BERT
encoding for text and employs a parallel feature extraction method

combining self-attention, LSTM, and SKNet [14] to process the text,
thus efficiently obtaining the feature representation spatially and
temporally. In this work, since BERT has already performed exten-
sive calculations of token-level interactions through self-attention,
we consider removing the self-attention mechanism from the text
feature extraction in PEMNet to accelerate model training and re-
duce computational overhead. Subsequent comparison and ablation
experiments will also demonstrate the effectiveness of this step.

Specifically, given a text input 𝑡𝑖 ∈ 𝑚𝑖 , we extract the feature of
it in parallel. Let 𝑆𝐾𝑁𝑒𝑡 (∗) be the spatial feature extractor while
𝐿𝑆𝑇𝑀 (∗) be the temporal feature extractor. The output of these
two models can be depicted as ℎ1 and ℎ2:

ℎ1 = 𝑆𝐾𝑁𝑒𝑡 (𝑡𝑖 ), ℎ2 = 𝐿𝑆𝑇𝑀 (𝑡𝑖 ), 𝑡𝑖 ∈𝑚𝑖 (1)

Then, we take the concatenation of ℎ1 and ℎ2 as the output of the
text feature representation:

𝑡
′
= ℎ1 ⊕ ℎ2 (2)

In terms of image features, we consider integrating both semantic
and spatial features. Therefore, we use the Vision Transformer (ViT)
and CNN for feature extraction and concatenate the output results
to form the feature representation of the image input. Given an
image input 𝑣𝑖 ∈𝑚𝑖 , applying the same parallel extraction method
as the text feature extractor, we can derive the spatial and temporal
features ℎ3 and ℎ4 of the image at the same time utilizing 𝐶𝑁𝑁 (∗)
and 𝑉𝑖𝑇 (∗):

ℎ3 = 𝐶𝑁𝑁 (𝑣𝑖 ), ℎ4 = 𝑉𝑖𝑇 (𝑣𝑖 ), 𝑣𝑖 ∈𝑚𝑖 (3)

Then, to align the visual and textual space, we employ a projection
layer to match the dimensionality of the image features with that of
the text features, where 𝑣

′
is the final representation of the visual

feature,𝑊𝑝 and 𝑏𝑝 are the parameters of the projection layer:

𝑣
′
=𝑊𝑝 (ℎ3 ⊕ ℎ4) + 𝑏𝑝 (4)

To integrate the rationales generated by large models, we first
embed the three rationales 𝑟𝑝𝑜𝑠 , 𝑟𝑛𝑒𝑢 and 𝑟𝑛𝑒𝑔 produced by the
LMMs, treating them as the “third modality” in the multimodal
fusion process.

𝑟
′
= 𝑇𝑒𝑥𝑡𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑅), 𝑅 = {𝑟𝑝𝑜𝑠 , 𝑟𝑛𝑒𝑢 , 𝑟𝑛𝑒𝑔} (5)

Then, a lightweight attention mechanism [9] is applied to compute
the importance weights for the three modalities, followed by a
weighted summation to obtain the final fused representation of the
input image-text pair and the LMMs’ rationale-based predictions.

𝑓 =

3∑︁
𝑖=1

𝛼𝑖 𝑓𝑖 (6)

where 𝑓𝑖 ∈ {𝑣
′
, 𝑡
′
, 𝑟
′ } and 𝛼𝑖 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐿𝑖𝑛𝑒𝑎𝑟𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑓𝑖 ))

Finally, we employ a multi-layer perceptron to make predictions,
where the cross-entropy loss is applied as the loss function of the
classification task.

4.3 Contrastive Learning
To better learn the fused feature representations of multimodal
inputs from a specific class of labels and differentiate the features
from different labels, we employ a contrastive learning approach.
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Based on the labels of the multimodal data, we categorize the sam-
ples into specific classes. For positive samples (the purple squares in
Fig. 2), all other samples except the other positive ones are treated
as negative samples (the white squares in Fig. 2). The same prin-
ciple applies to neutral and negative samples. We then compute
the similarity of the feature and obtain the contrastive learning
loss. This loss is subsequently combined with the loss from the
classification task to form the overall loss of the model, which is
used for backpropagation. The detailed algorithm for getting the
mask of MLCL is presented in Algorithm 1.

Algorithm 1 Multi-label Contrastive Learning Mask Generation
1: Input: Labels of image-text pair L
2: Output: Multi-label Contrastive Learning Mask
3: Stage 1: Compute label mask:
4: Create an empty matrix mask of size 𝑁 × 𝑁
5: for 𝑖 = 1 to 𝑁 do
6: for 𝑗 = 1 to 𝑁 do
7: if L[𝑖] = L[ 𝑗] then
8: mask[𝑖, 𝑗] = 1
9: else
10: mask[𝑖, 𝑗] = 0
11: end if
12: end for
13: end for
14: return𝑚𝑎𝑠𝑘

Inspired by supervised contrastive learning [11], after obtain-
ing the mask, we are able to compute the multi-label contrastive
learning loss, the process of which is given in Algorithm 2.

Algorithm 2 Computation of Multi-label Contrastive Learning
Loss
1: Input: Text encoder feature vector f𝑡 , Image encoder feature

vector f𝑖
2: Output: Contrastive loss LMLCL
3: z𝑡 ← Text Encoder(f𝑡 )
4: z𝑖 ← Image Encoder(f𝑖 )
5: for each pair of features (z𝑡 , z𝑖 ) do
6: Compute cosine similarity:

𝑠 [𝑡, 𝑖] = z𝑡 · z𝑖
∥z𝑡 ∥∥z𝑖 ∥

7: If pair is positive then
8: Compute positive cosine similarity:
9: s+ [t, i] ← s[𝑡, 𝑖] ∗𝑚𝑎𝑠𝑘 [𝑡, 𝑖]
10: Else
11: Compute negative cosine similarity:
12: s+ [t, i] ← s[𝑡, 𝑖] ∗ (1 −𝑚𝑎𝑠𝑘 [𝑡, 𝑖])
13: end for
14: Compute the Multi-label Contrastive Learning:

LMLCL = −
𝑁∑︁
𝑖

1
|𝐶 (𝑖) |

𝑁∑︁
𝑡

log
exp(𝑠+ [𝑡, 𝑖])∑𝑁

𝑗 1𝑗≠𝑖 exp(𝑠 [𝑡, 𝑗]) + 𝜖
15: return LMLCL

4.4 Model Training
We adopt the cross-entropy loss for sentiment classification and
adopt the multi-label contrastive learning loss for contrastive learn-
ing. To enable effective multi-task learning, we assign a specific
weight to each loss term, ensuring that the model updates its param-
eters appropriately through backpropagation. By balancing these
loss functions, we aim to optimize the joint learning process and
enhance the overall performance. The total loss function for our
multi-task framework can be formulated as follows:

L(Θ) = 𝜆1 · L(Θ)𝐶𝐸 + 𝜆2 · L(Θ)𝑀𝐿𝐶𝐿 (7)

We denote Θ as the parameters in our model to be learned, L𝐶𝐸 as
the cross-entropy loss and theL𝑀𝐿𝐶𝐿 as the multi-label contrastive
loss. Theweights 𝜆1 and 𝜆2 determine the degree of emphasis placed
on each loss term during the training process, where 0 < 𝜆2 < 𝜆1 ≤
1 due to the fact that the weight of contrastive learning should not
exceed the weight of the main task, i.e., the classification task.

5 Experiments
To validate the effectiveness of our model in the multimodal senti-
ment analysis task, we perform comparative experiments on four
different datasets. The results demonstrate that our model achieves
outstanding performance across all datasets. To further investigate
the structural effectiveness of our model, we perform an ablation
study, systematically removing components of the model to un-
derstand their individual contributions. In addition, we conduct a
case study to provide more intuitive insights into how our model
captures multimodal sentiment factors. This case study allows us
to analyze how well the model integrates and interprets the infor-
mation from various modalities, such as text, images, and other
auxiliary data, to better predict sentiment in real-world scenarios.

5.1 Datasets
Experiments are conducted using four datasets listed below:

- MVSA-Single and MVSA-Multiple [22] are image-text
pairs collected from Twitter. Each pair contains an iamge
and a corresponding text with a unified label. To ensure fair
comparisons, we preprocess the dataset the same way in
MultiSentiNet [31].

- Memotion [23] has 10k memes which are obtained from
social media. Each meme image is accompanied by a corre-
sponding text. By combining the text within the meme and
the meme itself, a unified label is assigned to represent the
sentiment stance of the person who posted the meme.

- CH-Mits [21] is a Chinese multimodal dataset derived from
one of the most famous Chinese social media the Xiaohong-
shu, which contains a large amount of multimodal content
with the blogger’s emotional stances.

To reduce computational costs during both training and infer-
ence, we freeze the LMM parameters and construct a dataset that
contains readily available outputs based on each of the aforemen-
tioned dataset. We split all the dataset into three parts: training
set, validation set, and test set with a ratio of 8:1:1. Statistics of the
datasets are shown in Table 1.
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Table 1: Statistics of the selected datasets.

Dataset # Train # Val # Test # Total
MVSA-Single 3,611 450 450 4,511
MVSA-Multiple 13,624 1,700 1,700 17,024
Memotion 5,594 699 699 6,992
CH-Mits 1,620 202 202 2,024

5.2 Experimental Setup
All of our experiments are conducted on a workstation equipped
with an NVIDIA GeForce RTX 3090 GPU (24GB memory).

In order to verify the effect of LMMs onMSA task, we employ the
Qwen2.5-VL-7B-Instruct3 as the instructor of the traditional models.
For each dataset, we set the optimal parameter combinations to
ensure the best performance of our model. The details are shown
in Table 2. We evaluate the performance of the model using two
metrics: Accuracy (Acc) andWeighted F1 Score. Accuracy measures
the overall proportion of correctly classified samples, providing a
general evaluation of the model’s ability for sentiment classification.
Weighted F1 Score, on the other hand, accounts for class imbalances
by computing the F1-score for each class and weighting them by
the class distribution, which ensures that the evaluation reflects
the model’s effectiveness across all categories, even in imbalanced
datasets.

Table 2: Parameter settings for different datasets.

Parameters MVSA-S MVSA-M MEMOTION CH-Mits

Learning Rate 1 × 10−5 5 × 10−6 1 × 10−5 5 × 10−5

Optimizer AdamW

Batch Size 16 8 16 16

Scheduler Cosine Annealing

Epoch 20

Embedding Size 768

5.3 Baselines
We compare our framework MPT with several unimodal and multi-
modal baselines.

5.3.1 Unimodal Baselines. CNN [12] and LSTM [42] are employed
in text classification tasks. BERT [6] captures the bidirectional
context information, improving the model’s understanding of input
texts. For images, we utilize CNN and Visual Transformer [7] to
evaluate the model’s capability in capturing spatial and semantic
features from the visual modality.

5.3.2 Multimodal Baselines. We also compare MPT with following
MSA models: CoMN [32], MVAN [37], MGNNS [38], CLMLF [16],
ITIN [44], CGAFT [30] and CiteNet [27].

3https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct

- CoMN [32] incorporates context-aware mechanisms to en-
hance cross-modal understanding for sentiment classifica-
tion, enabling better alignment between modalities and emo-
tional context.

- MVAN [37] employs cross-modal attention to effectively
capture complementary information across visual, audio,
and textual modalities, improving robustness in diverse emo-
tional scenarios.

- PEMNet [21] utilizes the parallel feature extraction method
to obtain the spatial and textual features of the input.

- MGNNS [38] uses graph neural networks to structure multi-
modal data and performs semantic-level fusion for sentiment
reasoning, facilitating better relational understanding among
multimodal features.

- CLMLF [16] introduces contrastive learning to guide multi-
level fusion of multimodal features, enhancing sentiment
discriminability through more informative feature represen-
tations.

- ITIN [44] employs an image-text interaction network to
explore the intricate associations between affective image
regions and textual words for emotion detection.

- CGAFT [30] designs an adaptive fine-tuning method that
integrates fine-grained interactions between image patches
and text words for sentiment prediction.

- CiteNet [27] introduces a novel multimodal sentiment pre-
diction approach that uses an extraction-estimation-fusion
paradigm to improve accuracy by addressing sentiment in-
congruities and employing cross-modal fusion techniques.

5.4 Experimental Analysis
5.4.1 Comparisons with baselines. We conduct experiments with
other multimodal baselines on four datasets. Moreover, we explore
the performances between uni-modality and multi-modality senti-
ment analysis. The overall results are summarized in table 3.

The experimental results demonstrate that our proposed frame-
work, MPT, consistently outperforms all baseline methods across
all four benchmark datasets. In particular, MPT achieves the high-
est performance on both the MVSA-Single and CH-Mits datasets,
which are English and Chinese datasets respectively. This not only
highlights MPT’s superior capability in handling diverse data distri-
butions and multimodal inputs but also demonstrates its potential
for effective cross-lingual multimodal sentiment analysis. These
results strongly validate the robustness and analytic ability of MPT
across different languages and modalities.

Specifically, on the MVSA dataset, MPT achieves the best accu-
racy, significantly outperforming the strongest baseline CiteNet.
The F1 score also improved, reflecting better feature alignment and
sentiment discrimination for subtle visual-textual cues.

For MEMOTION, despite the relatively lower overall Accuracy
(58.37%) and F1 (48.16%), MPT still surpasses all baselines, indicat-
ing its effectiveness in handling complex emotion expressions and
multimodal inputs with implicit or weak emotional semantics.

In particular, on the CH-Mits Chinese-language dataset, our
model achieves 98. 02% accuracy, outperforming existing approaches
and highlighting the multilingual adaptability of MPT.
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Table 3: Experimental results on four datasets, where bolded fonts indicate the best performance.

Modality Model MVSA-Single MVSA-Multiple MEMOTION CH-Mits
Acc F1 Acc F1 Acc F1 Acc F1

Text CNN [12] 0.6819 0.5590 0.6564 0.5766 0.4657 0.4508 0.7185 0.7183
LSTM [42] 0.7012 0.6506 0.6790 0.6790 0.5036 0.4536 0.8735 0.8733
BERT [6] 0.7111 0.6970 0.6759 0.6624 0.5572 0.4608 0.9136 0.9138

Image CNN [12] 0.6526 0.6364 0.6662 0.6623 0.4943 0.4494 0.8865 0.8863
ViT [7] 0.6715 0.6226 0.6765 0.5864 0.5401 0.4528 0.9260 0.9270
Co-Mem [32] 0.7051 0.7001 0.6992 0.6883 0.5354 0.4608 0.9580 0.9581
MVAN [37] 0.7298 0.7298 0.7183 0.7038 0.5583 0.4683 0.9679 0.9679
PEMNet [21] 0.7317 0.7177 0.7109 0.6921 0.5618 0.4727 0.9778 0.9780
MGNNS [38] 0.7377 0.7270 0.7249 0.6934 0.5518 0.4665 0.9629 0.9629

Image+Text CGAFT [30] 0.7416 0.7305 0.7233 0.6992 0.5715 0.4697 0.9703 0.9703
ITIN [44] 0.7456 0.7437 0.7215 0.6975 0.5768 0.4754 0.9653 0.9653
CLMLF [16] 0.7533 0.7346 0.7200 0.6983 0.5761 0.4731 0.9703 0.9702
CiteNet [27] 0.7609 0.7467 0.7289 0.7035 0.5794 0.4755 0.9752 0.9752
MPT(ours) 0.7795 0.7562 0.7294 0.7107 0.5837 0.4816 0.9802 0.9802

The overall comparative experimental results validate the effec-
tiveness of our proposed model, MPT. Across four different datasets
of two languages, the LMM-Instructed multimodal sentiment anal-
ysis framework outperforms all other traditional deep learning
approaches. These results highlight the advantages of leveraging
large multimodal models for sentiment analysis tasks, demonstrat-
ing their potential to significantly enhance performance in complex
multimodal scenarios.

5.4.2 Comparisons with the LMM itself. We also compare MPT
with the discrimination capabilities of the LMM itself (Qwen2.5-VL).
Fig. 4 presents the performance comparison between MPT and the
LMM Qwen2.5-VL across four datasets. The experimental results
demonstrate that our model significantly outperforms Qwen2.5-VL
in sentiment classification, achieving superior performance on all
four datasets. Notably, our model shows substantial improvements
on datasets like MEMOTION, which require understanding both the
surface and deeper semantics of multimodal inputs. These results
highlight that the reasoning ability of large multimodal models can
benefit traditional deep learning multimodal sentiment analysis
frameworks. Moreover, they suggest that traditional sentiment
analysis networks can produce more accurate predictions under
multi-perspective instructions from LMMs.

As shown in Fig. 5, the confusion matrix of MPT exhibits more
true positives along the diagonal compared to Qwen2.5-VL, and the
predicted values are overall closer to the ground truth. For example,
both false negatives (FN) and false positives (FP) are significantly
reduced. These findings further confirm that our approach achieves
a notable improvement in sentiment analysis performance over the
LMM itself, indicating that MPT can more accurately identify user
sentiment frommultimodal content compared to using Qwen2.5-VL
alone.

5.4.3 When traditional deep learning models meet LMMs. To verify
the effectiveness of the utilization of LMMs, we also conduct experi-
ments with or without the multi-perspective thinking on traditional
deep learning models. The results are shown in Table 4. We can
observe that all models’ performance get improved when thinking
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Figure 5: Confusion matrices comparisons between MPT and
the LMM Qwen2.5-VL.

from multiple perspectives via the LMM. This demonstrates that
multiple-perspective thinking is able to strengthen traditional deep
learning models in MSA tasks.

5.4.4 When sentimental polarities are opposite. In the datasetMEM-
OTION and CH-Mits, there exist 1,941 and 105 image-text pairs
that deliver opposite sentiments. We also conduct the experiments
specifically on those cases. The results are summarized in Table 5.
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Table 4: Performance of deep learning models w/ or w/o
multiple-perspective thinking for MSA task.

Model LMM Acc F1 Acc F1
MVSA-Single MVSA-Multiple

CoMN [32] w/o MPT 0.7051 0.7001 0.6992 0.6883
w/ MPT 0.7183 0.7106 0.7040 0.6992

CLMLF [16] w/o MPT 0.7533 0.7346 0.7200 0.6983
w/ MPT 0.7595 0.7386 0.7228 0.7019

ITIN [44] w/o MPT 0.7456 0.7437 0.7215 0.6975
w/ MPT 0.7584 0.7482 0.7239 0.7066

We see that MPT maintains a strong predictive ability even in in-
stances of sentiment inconsistency between text and image, indicat-
ing that our model can identify sarcastic scenarios to some extent.
Furthermore, achieving such a strong capability on both Chinese
and English datasets demonstrates that our model possesses robust
prediction abilities across datasets in different languages.

Table 5: Performance on text-image pairs with opposite sen-
timental polarities.

Model Acc F1 Acc F1
MEMOTION CH-Mits

Co-Mem 0.5309 0.4419 0.9238 0.9238
MVAN 0.5361 0.4446 0.9333 0.9333
PEMNet 0.5490 0.4467 0.9524 0.9524
MPT 0.5644 0.4514 0.9619 0.9619

5.5 Ablation Study
We also conduct the ablation study on the dataset MVSA-Single
and MVSA-Multiple. The result of the experiment is depicted in the
Table 6.

Table 6: Ablation study results on the MVSA-Single and
MVSA-Multiple datasets. "✓" indicates the module is enabled,
and "✗" indicates it is disabled.

R𝐿𝑀𝑀 MLCL Model Acc F1 Acc F1
MVSA-Single MVSA-Multiple

✗ ✗ Baseline 0.7206 0.7117 0.7098 0.6886
✓ ✗ +R𝐿𝑀𝑀 Only 0.7528 0.7347 0.7224 0.7012
✗ ✓ +MLCL Only 0.7317 0.7177 0.7192 0.6935
✓ ✓ Full Model 0.7795 0.7562 0.7294 0.7107

As shown in the table, both the R𝐿𝑀𝑀 (Rationales from the
LMMs) and MLCL (Multi-label Contrastive Learning) modules con-
tribute positively to the overall model performance. When both
modules are enabled in the Full Model, the highest accuracy and
F1 scores are achieved across both datasets, confirming the syn-
ergy and complementary benefits of the two modules. In summary,
R𝐿𝑀𝑀 focuses on semantic enhancement, while MLCL strengthens
similar representations of vectors from the same label, and their
combination effectively improves model’s performance, validating
the effectiveness of the guidance of LMMs on the traditional MSA
task.

To demonstrate the effectiveness ofMLCL and LMM in our frame-
work, we perform t-SNE dimensionality reduction visualizations
on the results using contrastive learning alone and a combination
of contrastive learning with LMM in Fig. 6. Figures (a) and (b) show
the visualizations obtained using contrastive learning alone. After
10 iterations, the features of data with different labels become more
similar after vectorization and dimensionality reduction, indicating
that the contrastive learning module effectively brings data of the
same label closer together. Figures (c) and (d) illustrate the results
when LMM instructions are incorporated into the contrastive learn-
ing framework. After just one iteration, the model exhibits an initial
ability to accurately discern user sentiment. After 10 iterations, it is
evident that the addition of LMM further increases the separation
between data of different labels in the 2-D plane. This highlights
the complementary and mutually reinforcing nature of the con-
trastive learning and LMM modules. These results further validate
the effectiveness of the proposed model.

(a) +MLCL, Epoch=1 (b) +MLCL, Epoch=10

(c) +MLCL, +LMM, Epoch=1 (d) +MLCL, +LMM, Epoch=10

Figure 6: t-SNE Visualization on MVSA-Single dataset.

To evaluate the effectiveness of the contrastive learning module
in multimodal sentiment analysis, we also conduct experiments
on MVSA-Single and MVSA-Multipleb by varying the contrastive
learning loss weight 𝜆2, using accuracy and F1 score as metrics as
well. The results are displayed in Fig. 7, from which we see that
on both MVSA-Single and MVSA-Multiple datasets, introducing a
small contrastive loss weight (0.05 to 0.10) can improve model per-
formance significantly: both accuracy and F1 score can be boosted.
This observation indicates that contrastive learning can help ex-
tract more robust features in smaller datasets. However, further
increasing the weight to 0.15 leads to performance degradation,
which is likely due to contrastive loss that overwhelms the main
objective of the task.

5.6 Case Studies
To demonstrate the reasoning ability of the MPT framework for
cross-modal semantic connection, we collect some typical cases
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Figure 7: Impact of contrastive learning weight 𝜆2.

where MPT can make correct predictions while other models like
traditional neural networkmodels (NN) and single largemultimodal
models (LMM) cannot provide correct predictions (illustrated in
Table 7). Many multimodal input pairs contain complex semantics
that cannot be accurately interpreted from surface-level informa-
tion alone. Due to the limitations of decoder-only models, the LMM
may struggle to capture the full contextual information necessary
for accurate sentiment prediction. In such cases, it becomes essen-
tial to combine both approaches to leverage their complementary
strengths. The example in the table demonstrates a scenario where
both the traditional deep learning model and the LMM individually
fail to make the correct prediction, while their combination – our
proposed MPT framework – successfully predicts the correct senti-
ment. This highlights the advantage of integrating two models for
more robust and accurate understanding.

In addition, we visualize the attention weights from the final
layer of the Transformer structure to further interpret the model’s
decision-making process. As illustrated in Fig. 8, the highlighted
areas represent the regions or tokens that contribute most signif-
icantly to the model’s prediction. The left side of Fig. 8 presents
a positive sentiment example. It can be observed that the model
successfully identifies key visual cues such as the subject’s facial
expression and the trophy held in hand, which indicate a positive
emotional state. In the textual modality, words like “celebrate” and
“success” are assigned higher attention weights, further supporting
a correct sentiment classification. The right side of Fig. 8 showcases
a negative sentiment case. The model effectively captures the sub-
ject’s negative emotion from the image and accurately attends to
indicative words in the text, such as “gloomy”, which conveys a
strong sense of negativity.

This visualization demonstrates that our model is capable of
correctly identifying and leveraging critical features from both
visual and textual modalities, thereby validating the effectiveness
of our proposed approach in multimodal sentiment understanding
and analysis.

6 Conclusion
In this study, we introduce multi-perspective thinking (MPT) via
large multimodal models as a novel approach to strengthen conven-
tional models for MSA tasks. The proposed framework effectively
integrates traditional MSA models with advanced LMM inference
capabilities, allowing for a more nuanced understanding of senti-
ment across various modalities, leading to improved performance
in the sentiment classification tasks.

Table 7: Examples where MPT can make correct predictions
while other models make incorrect predictions.

Image Text NN LMM MPT

8am and she’s already
beaten @JohnCena.
When does school
start?

Positive Positive Negative

Bitter reality of
#VyapamScam so
@ChouhanShivraj
must go @geetv79

Positive Neutral Negative

My cat is sad because
he arrived in the room
and found everyone
talking about how his
bleak outlook brings
them down.

Negative Neutral Positive

                                                                     

Figure 8: Attention weights visualization of selected samples.

For future work, we could utilize the cross-attention mechanism
or contrastive learning to align the visual and textual modality to
let them "see" each other, which would enable the model to more
accurately capture the intricate relationships betweenmodalities. In
addition, we consider conducting user sentiment analysis on short
video platforms (e.g., TikTok), where visual, textual, and audio
signals can be comprehensively explored.
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